

E-mail:sales@sunlongbiotech.com

www.sunlongbiotech.com

β-Hydroxybutyric acid (β-HB) Content Assay Kit

Note: Take two or three different samples for prediction before test. **Operation Equipment:** Spectrophotometer/Microplate reader

Catalog Number: AK0005

Size: 100T/48S

Components:

, , , , , , , , , , , , , , , , , , ,					
Reagent	Size	Storage			
Extract solution	Solution 110 mL×1 4°C				
Reagent I	Solution 20 mL×1	4°C			
Reagent II	Powder×2	-20°C			
Reagent III	Powder×2	-20°C			
Chromogenic solution	Solution 1.5mL×1	-20°C			
Standard	Powder×1 4°C				

Solution preparation:

- 1. Reagent II: Take one powder and add $600\mu L$ distilled water before use. Mix thoroughly. Unused reagents should be store at -20°C for three weeks. Avoid repeated freezing and thawing.
- 2. Reagent III: Take one powder and add 400μ L distilled water before use(about 100T). Mix thoroughly. Unused reagents should be store at -20°C for two weeks. Avoid repeated freezing and thawing. Reagent III is not easy to save, so give one more powder.
- 3. Working Solution: According to the ratio of 85:4:1, Reagent I, Reagent II and Reagent III are mixed into working solution before use. According to the test requirements. Mix thoroughly. Keep it at 37°C for 15 min (this step can't be omitted). The working solution should be used up in 4 hours.
- 4. Standard: 8mg sodium 3-hydroxybutyrate. Add 960μL distilled water before use. Mix thoroughly. That is 80μmol/mL of sodium 3-hydroxybutyrate standard solution.

Product Description:

β-Hydroxybutyric acid (β-HB), in patients with severe acidosis, NADH production increases due to acidosis, which in turn promotes the ratio of β-hydroxybutyric acid to acetoacetic acid to increase from the normal 2:1 to 16: 1. β-hydroxybutyric acid is of great significance in the diagnosis and treatment of diabetic ketoacidosis. It is also of great significance for the early diagnosis of diabetes. **The kit is suitable for serum, plasma, urine and other liquid samples.**

At pH8.8 and 37°C, β -hydroxybutyrate reacts under the catalysis of β -hydroxybutyrate dehydrogenase, and NAD⁺ is oxidized to NADH. In the presence of 1-mPMS, WST- 1 can react with NADH to produce water-soluble formazan with a characteristic absorption peak at 450nm. The content of β -HB can be calculated by detecting the wavelength change at 450nm.

Reagents and Equipment Required but Not Provided:

www.sunlongbiotech.com

E-mail:sales@sunlongbiotech.com

Spectrophotometer/microplate reader, desk centrifuge, pipette, micro glass cuvette/96 well flat-bottom plate, mortar/homogenizer, ice and distilled water.

Procedure

I. Sample preparation:

Serum, plasma, urine or other liquid samples: Detect sample directly. If the solution is turbid, perform the measurement after centrifuging.

II. Determination procedure:

- Preheat spectrophotometer/microplate reader for 30min, adjust wavelength to 450nm, set zero with distilled water.
- Dilute 80µmol/mL sodium 3-hydroxybutyrate standard solution with distilled water to 1.25, 0.625, 0.3125, 0. 15625, 0.078125µmol/mL standard solution before use.

Determination:

D (/ I)	Test tube	Contrast tube	Blank tube	Standard tube	
Reagent (μL)	1 est tube	Contrast tube	Dialik tube	Standard tube	
Sample	20	20			
Distilled water			20		
Standard solution				20	
Working solution	180		180	180	
Reagent III		180			
React at 37°C for 10min.					
Chromogenic solution	10	10	10	10	
React at 37°C for 20min.					
Take 200μL to 96 well flat-bottom plate or micro glass cuvette. Measure absorbance at					

450nm. Record as $A_T \setminus A_C \setminus A_B \setminus A_S \cdot \Delta A_T = A_T - A_C, \Delta A_S = A_S - A_B$.

Note: blank tube and standard curve only need to be test one or two times.

III. Calculations:

1. Standard curve

Take the concentration of each standard solution as x-axis, and the corresponding ΔA standard is y-axis. Then the linear regression equation y=kx+b is obtained. Bring ΔA into the equation to get x ($\mu mol/mL$).

- 2. Calculate
- (1) Calculate by protein concentration
- β-HB content (μmol/mg prot)= $x \times V_S \div (V_S \times Cpr) = x \div Cpr$
- (2) Calculate by volume

β-HB content (μmol/mL Serum (plasma) or urine)= $x \times V_S \div V_S = x$

 V_S : Sample volume, $20\mu L=0.02mL$;

V_E: Extract solution volume, 1mL;

Cpr: Protein concentration of the sample, mg/mL.

Note:

1. After color development, please complete the test within 10 minutes.

E-mail:sales@sunlongbiotech.com

www.sunlongbiotech.com

2. If the measured absorbance value is lower or higher than the linear range absorbance value. The sample can be added or diluted before determination.

Examples:

1. Take $20\mu L$ bovine serum to test, follow the determination procedure to operate. Determination with 96 well flat-bottom plate, and calculate $\Delta A_T = A_T - A_C = 0.455 - 0.082 = 0.373$, standard curve: y = 0.4913x + 0.0043, calculate x = 0.750, according with mass of sample to calculate: β -HB content (μ mol/mL) = $x = 0.750 \mu$ mol/mL.

Related products

AK0282/AK0281 α-Ketoglutarate Dehydrogenase(α-KGDH) Activity Assay Kit AK0400/AK0399 Citric Acid (CA) Content Assay Kit AK0504/AK0503 Succinate Dehydrogenase (SDH) Activity Assay Kit AK0554/AK0553 Pyruvate Dehydrogenase (PDH) Activity Assay Kit AK0249/AK0248 Isocitrate Dehydrogenase Mitochondrial (ICDHm) Activity Assay Kit